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1 Summary

In this project, we explored the parallelization of Delaunay Triangulation algorithms using CUDA
on the GPU. Specifically, we analyzed the performance of four GPU implementations based on
Voronoi diagrams. For sufficiently large input sizes, our Jump Flood GPU implementation achieves a
significantly higher speedup over a single-threaded CPU Randomized Incremental implementation.
For an input set of 10 million points, our best implementation has a 70× speedup.

2 Background

The Delaunay Triangulation (DT) is a specific triangulation over a set of vertex points such that
every triangle satisfies the Delaunay constraint. In particular, given any triangle in the resulting
triangulation, no other vertices are within the circumcircle formed by the triangle. Because of this
constraint, the Delaunay Triangulation of a set of vertices avoids long, skinny triangles by maximizing
the minimum angle of all triangles. It is interesting to note that there must exist one unique Delaunay
Triangulation over a set of vertices containing no more than 3 points on the same circle. An example
of Delaunay Triangulation is shown in Figure 1.

Figure 1: A triangle and point that do not satisfy the Delaunay constraint, a triangle and point that
satisfies the Delaunay constraint, and an example of a Delaunay Triangulation mesh.

Generation of Delaunay Triangulation is an important task in many computer graphics applications
and can also be applied to a variety of fields such as terrain modelling, path planning, and finite
element analysis [1]. Because algorithms that perform Delaunay Triangulation are computationally
expensive, parallelization of Delaunay Triangulation algorithms is an area of continued research.

The goal of this project is to explore parallelization of Delaunay Triangulation using the CUDA
platform on Nvidia GPU. We hypothesize that the powerful support for parallel computations makes
GPU a good choice for speeding up Delaunay Triangulation.

2.1 Inputs, Outputs, and Data Structures for Delaunay Triangulation

The input to the Delaunay Triangulation problem is an array of vertices V = {v1, ..., vn}. The output
is a list of triangles T = {(i11, i12, i13), (i21, i22, i23)...}, represented by an array of triplets, where each
element of the triplet is an index to the corresponding vertex in the list of vertices V .



For each triangle t ∈ T , we maintain the set of points that violate the Delaunay constraints E(t).
For example, if some point p is in triangle t’s circumcircle, then p ∈ E(t). Furthermore, some
implementations also include a list of neighbors for each triangle, represented as a list of triplets
where each element of the triplet is an index to the list of triangles T .

2.2 Algorithmic Approaches to Delaunay Triangulation

There are multiple algorithmic approaches to solving the Delaunay Triangulation. They are generally
divided into three categories: the random incremental approach, the divide and conquer approach,
and the sweepline approach [2]. We explore an approach that does not fit into any of these categories:
using the Voronoi dual. Solving for the discrete Voronoi diagram over a set of vertices is the
mathematical dual of solving the Delaunay Triangulation. By obtaining the Voronoi diagram, we can
also solve for the Delaunay Triangulation over a set of vertices. In this project, we considered the
Random Incremental Approach and the Discrete Voronoi Dual approach as potential candidates of
parallelization.

2.2.1 Randomized Incremental Delaunay Triangulation

The Randomized Incremental Delaunay Triangulation algorithm works by incrementally adding
points in the set of input vertices V into the existing triangulation T . At each step, we first create
a valid triangulation with the newly added point v∗ and then perform a series of "edge flips" to
inductively maintain the Delaunay constraint [3]. The steps of the algorithm are as follows:

1. Construct a large bounding triangle around the set of input vertices V .
2. Randomize the set of vertices V to insert.
3. Randomly insert a point into the triangulation. Locate the triangle containing the point and

connect the vertices of the triangle to the point.
4. Test that the Delaunay Constraint is satisfied. Perform edge flipping until the triangulation

is a Delaunay Triangulation.
5. Repeat step 3 and 4 until all vertices are added to the triangulation.

The most computationally expensive phase in the Incremental Delaunay Triangulation algorithm is
the Edge Flipping phase, since an edge flip between two triangles can trigger subsequent edge flips in
the neighbors of both triangles. To prevent conflicts, this phase can be parallelized using fine-grained
locks or fine-grained atomic instructions on vertices.

The Randomized Incremental DT also contains strong sequential dependencies. In particular, we
observe that the edge flips on the same set triangles must be performed sequentially. Furthermore,
after each edge flip, the Delaunay constraint of the nearby triangles must be re-evaluated since some
triangles have changed orientation. This edge flip dependency leads to weak data parallelism, which
may severely limit the overall parallelism of the algorithm.

2.2.2 Voronoi Dual to Delaunay Triangulation

Mathematically, the 2D Voronoi diagram is a dual of 2D Delaunay Triangulation. A Voronoi
diagram partitions a plane into regions based on shortest distance to a set of points on the plane. By
constructing a Voronoi diagram of the input vertices V and connecting neighboring vertices, we obtain
the Delaunay Triangulation over the vertices V . Figure 2 illustrates the relationship between Voronoi
diagrams and Delaunay Triangulation. Note that in the discrete case, the Delaunay Triangulation
obtained from Voronoi diagram may not be exact and can be near-Delaunay.

The most computationally-expensive step in this approach is the generation of the Voronoi diagram,
which is often computed over a grid of pixels and can be highly data-parallel. In particular, computa-
tions can be done nearly independently at a pixel granularity, making this approach a better candidate
for the GPU than Randomized Incremental DT.

2.3 Implementation Assumptions

Throughout this project, we observe that Delaunay Triangulation over floating point vertices sig-
nificantly increases the implementation complexity of many Delaunay Triangulation algorithms.
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Figure 2: The 2D Voronoi diagram is a dual of 2D Delaunay Triangulation. Image from [4].

Therefore, we have decided to work with simplified Delaunay Triangulation algorithms. In particular,
we assume that all input points have integer coordinates. This means that all coordinates fit onto a
pixel grid and eliminates the need to handle missing and shifted points in Voronoi-based approaches.

Furthermore, we allow some results produced by the GPU implementations to be near-Delaunay (with
most of the triangles satisfying the Delaunay constraint). Implementations usually have a "Delaunay
Refinement" phase at the end of the algorithm, where we iterate through the vertices one last time
to ensure they meet the Delaunay constraint, performing edge flipping if necessary. Algorithms for
Delaunay Refinement are not within the scope of this project.

2.4 Experimental Baseline

We use the single-threaded CPU implementation based on the Randomized Incremental approach of
DT provided in the Problem Based Benchmark Suite (PBBS) package [5] as the baseline to analyze
our GPU implementations. It is a robust implementation of Delaunay Triangulation and a common
benchmark for many DT algorithms.

3 Approach

Our parallel implementation of Delaunay Triangulation involved many iterations, each with dif-
ferent approaches. We began with analyzing a parallelization of the Randomized Incremental DT
approach proposed by Boissonnat and Teillaud [6] in order to gain better insight into the paralleliza-
tion strategies. Next, we implemented three different Voronoi-based DT approaches. Lastly, we
analyzed a state-of-the-art Voronoi-based GPU implementation [7] and compared it with our GPU
implementations.

Our GPU implementations are coded in CUDA and C++ and tested on an Nvidia Tesla K80 GPU.

3.1 Input Generation

We wrote a script that could generate sets of points for our input into the Delaunay Triangulation
code. Parameters were number of points, the input dimension (width of possible point range), and
the type of distribution (uniform or Gaussian). For uniform distributions, points were randomly
generated integers in the range of 0 to inputDimension for the x and y coordinates. For Gaussian
distributions, points were generated about a mean of inputDimension/2 with standard deviation
inputDimension/4.

Points were added to a hash set so that there were no duplicates, and were generated until the set
contained the desired number of points.

Since the point coordinates are all integers, there is a relationship between the input dimension and
the maximum number of points that an input set can contain. If there are a lot of points in a relatively
small input grid, there is a greater likelihood that three neighboring points may be collinear, which can
lead to incorrect DT (assuming no Delaunay Refinement phase). Therefore, a certain ratio between
the input dimension and number of points is maintained in all test inputs.
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3.2 Parallel Randomized Incremental Approach Analysis

Since we used the single-threaded Delaunay Triangulation implementation in the PBBS package [5]
as our baseline, we first began our investigation by examining the parallelization strategy employed
in the existing parallel CPU implementation of Randomized Incremental DT in the PBBS package.
The existing parallel CPU implementation is based on OpenMP and parallelizes the edge flipping
process by using fine-grained cmpxchg instructions.

Specifically, the algorithm maintains an array of flags F with the same size as the total number of
input vertices. Points are inserted to the triangulation in parallel batches. To avoid race conditions
in each batch, each vertex finds the triangle t containing it and uses cmpxchg to write its vertex id
onto F at the indices corresponding to the vertices of t. After all points in the batch are inserted, we
check the flag array F for contention between the inserted points. If contention exists, the point with
higher vertex ID acquires the resources and the insert commits. The point(s) with lower vertex ID
must perform a "retry" by deleting itself from the current triangulation, to be inserted again with the
next batch.

We further studied this parallelization strategy by profiling the contention rate and the execution
behaviors of the implementation across different numbers of threads on 10 million vertices using
Intel Xeon CPUs.

Figure 3: Number of retries at each iteration for
10 million uniformly distributed points

Figure 4: Number of threads vs. execution time
for different phases of the randomized incremen-
tal algorithm

From the above plots, we observe that there exists heavy contention of the existing triangles between
newly inserted vertices. In particular, the number of retries increases exponentially as number of
iterations increases.

Although the profiling is only done on an existing CPU implementation, the timing measurements
suggest that this strategy may not scale well with a large number of parallel threads. Specifically,
the exponential increase in data contention produces heavy dependencies between threads and may
seriously limit data-parallelism during later stages of the program execution. Thus, after analyzing
this strategy, we determined that this approach may not be a suitable for the GPU and that our GPU
implementation should not be based on the Randomized Incremental approach.

3.3 Voronoi Diagram-Based Approaches

After a literature review, we determined that in order to expose more parallelism in the algorithm,
we must fundamentally alter our algorithmic approach. Prior work by Rong et al. [7] and Qi
et al. [8] demonstrated success in generating Delaunay Triangulation from Discrete Voronoi Diagrams.
Because the generation of Voronoi Diagrams can be highly data-parallel, GPU implementations can
take advantage of the data-parallelism in Voronoi-based DT algorithms.

Our Voronoi Diagram-based GPU implementation consists of the following phases:

Phase 1 - Vertex Mapping: We construct a grid of pixels of size N × N , where N =
2ceil(log2(max(xmax−xmin,ymax−ymin))) (max of width and height rounded to the next power
of 2). We then map the input points into the pixel grid by scaling and shifting each point.
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Phase 2 - Voronoi Diagram Construction: Build a Discrete Voronoi diagram from the
vertices mapped on the grid.
Phase 3 - Triangle Reconstruction: Scan each pixel of the Voronoi diagram. For each
pixel (x, y), look at its neighboring 2×2 region of: (x+1, y), (x, y+1), and (x+1, y+1).
If the 2 × 2 region contains 3 colors, generate 1 triangle. If the region contains 4 colors,
generate 2 triangles as illustrated by Figure 5. We maintain a global triangle counter among
all kernel threads and increment this counter using an atomicAdd operation in order to pack
the reconstructed triangles compactly into the resulting array.

Figure 5: Each 2x2 region of pixels with 3-4 colors is marked as a vertex. Image from [9].

We observe that Phase 1 and Phase 3 of the algorithms are almost trivially parallelizable by assigning
each GPU thread to a pixel. However, as shown in Figure 6, we also note that Phase 2 of the
algorithm is the most computationally expensive, and efficient parallelization of Discrete Voronoi
Diagrams are non-trivial. Amdahl’s law suggests that parallelization efforts should be focused on the
Voronoi Diagram generation phase in order to achieve the greatest speedup. Therefore, much of our
implementation efforts are spent on efficient parallelization of Phase 2 of our algorithm.

3.3.1 Brute-Force Discrete Voronoi Generation

We first implemented Phase 2 of the algorithm using a brute force approach. We map each pixel to
a kernel thread. Next, we compute the distance of the pixel from all the other vertices in the grid
sequentially within the thread. Then, we assign the pixel to the index of the vertex closest to the pixel.
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Figure 6: Total runtime and runtime distributions for the Brute Force approach with varying number
of points. Both axes of the runtime plot are log-scaled. Inputs points have dimension 1024 and are
uniformly generated.

We observe that this approach achieves good load balancing as each kernel thread is assigned the
same number of vertices for distance computations. However, this approach had poor performance.
As shown in Figure 6, runtime scales linearly with number of points across all input sizes. From the
profiling results above, we notice that the Voronoi Generation phase of this approach dominates the
percentage of total runtime, and the percentage of time spent on this bottleneck phase increases as
the number of points increases. We hypothesize that the performance of the brute force approach is
hindered due to the following reasons:

• Algorithm Complexity: Given P input points, each thread performs a minimum of O(P )
work for each pixel. If the number of pixels in the grid is larger than the number of available
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kernel threads on the GPU, then each kernel thread has αO(P ) work where α > 1. This
means that the parallel implementation scales linearly with number of points, which is not
desirable as the number of points increases.

• Global Memory Access: The input vertices V are stored in global memory and are shared
between all kernel threads during computation. This may prevent kernel threads from
retaining some vertices in its L2 cache. Better memory arrangements can be made to move
sections of the vertices into shared memory of each block and swap the sections between
blocks after threads in each block complete their sections.

• Memory False Sharing: Each kernel thread writes single pixels to a global pixel map which
may lead to memory false sharing over a single cache line on block boundaries as there are
multiple pixels (of size int2) on a cache line.

3.3.2 Grid-Based Voronoi Generation

Because brute-force approach did not scale with respect to the number of points, we further explored a
divide-and-conquer approach. Similar to the parallelization approach in assignment 2, we decompose
the pixel map into grids and map each grid to a thread block on the GPU. For each pixel, the two
phases of the algorithm are described below and a diagram outlining the approach is shown in
Figure 7.

Phase 1 - Find Vertices in each Grid: The pixel map is divided into a 64 × 64 pixel
grid and each grid is assigned to a CUDA thread block. Within each block, each thread is
assigned a number of vertices and checks if each vertex is within the bound of its grid. If
the vertex is within bounds, the vertex index is recorded in a shared memory array within
the block and is later packed compactly using SharedMemoryExclusiveScan.

Phase 2 - Compute the Nearest Point for Pixel: After Phase 1, for each grid, we obtain a
list of vertices within the grid. Within each thread block, we then map each kernel thread to
4 pixels in the grid. For each pixel, we determine the closest vertex to the pixel based on the
vertices S in its grid and in the neighboring grids. If the set S is empty, we default to the
brute-force approach where we scan all input vertices for the particular pixel.

Figure 7: Illustration of the Grid-based Approach where the pixel map is decomposed into grids.
Threads in each grid find the vertex ID inside the grid, and the IDs are used when computing the
nearest vertex to a pixel.

This algorithm effectively partitions the pixel map and avoids extra work for each thread by restricting
the number of vertices to check. Given a uniformly distributed set of vertices that are dense enough,
the algorithm yields reasonable performance improvements. Indeed, as shown in Figure 8, compared
with the brute-force approach, the Grid-Based Voronoi Generation approach yields considerable
speedups across different input dimensions and number of points. Furthermore, Figure 8 shows that
the percentage of time spent on Voronoi diagram generation (percentage of P1 + P2) is lower for
the same workload when compared to the brute force approach. This indicates that the Grid-based
approach is an improvement over the brute force approach.
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Figure 8: Speedup diagram and runtime distributions for the Grid-based approach. The speedup
is computed with respect to the runtime of the brute force approach. The runtime distribution is
obtained using uniformly distributed inputs with dimension of 1024.

However, with more detailed analysis, we observed several major limitations in this approach that
affected its performance and overall correctness.

• Large Memory Requirement: Let the number of input points be P , the number of partitioned
grids be n, and the input dimension be N . Phase 1 of this Grid-Based Voronoi approach
requires at least O(nP ) memory. We note that n ∝ N . This linear scaling of memory with
respect to N and P is problematic, as the algorithm runs out of memory for inputs with
P > 1 million. This severely limits the robustness of the algorithm.

• Grid-Based Voronoi Generation does not produces exact Discrete Voronoi diagrams: the
approach is based on the key assumption that the vertex with the minimum distance to
a pixel is only within the set of vertices in the neighboring grids of the pixel. However,
this assumption does not always hold. An example of a failure case is shown in Figure
9. Although this limits robustness of the Voronoi diagram produced, we observe that the
triangulation results produced in a majority of test cases are still Delaunay since the Triangle
Reconstruction phase of the Triangulation algorithm only looks at the intersection of 3 or
more vertex colors.

Figure 9: An example where the Grid-based approach fails to generate the correct Voronoi diagram

• Limited Cache Locality: The input vertices are stored in a global memory array in no
particular order. For each pixel, the access of the vertices in neighboring grids occurs in
almost random order. This causes a large number of cache misses when computing the
closest vertices to each pixel. The input vertices can be sorted based on x and y coordinate
values to improve locality.

• Load Balancing Issues: The runtime of this implementation depends heavily on the distribu-
tion of the input vertices. In particular, if the input vertices are clustered in certain areas and
scattered in others, the algorithm will perform poorly as the thread blocks mapped to the
vertex cluster will have less work than the threads mapped to the other areas. An analysis on
the effects of input distribution on this approach is outlined in the Results section.
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3.3.3 Jump Flood Voronoi Generation

Although the Grid-Based Voronoi Generation approach presented significant limitations in perfor-
mance and correctness, it provided insights in the effectiveness of geometric-decomposition in GPU
parallelization of Voronoi diagrams. After much literature survey, we discovered an adaptation of the
Jump Flood Algorithm to generate Voronoi Diagrams on the GPU proposed by Rong and Tan [10]
which produced much better speedup performances than other approaches.

The Jump Flood Algorithm works in rounds where each pixel checks the 8 neighboring pixels that are
of step_size away from the pixel. The pixel then updates its closest vertex based on the coordinates
of the closest vertices of its neighboring pixels. The pseudocode for the algorithm is shown below:

Algorithm 1 Jump Flood for Voronoi Diagram Generation

V ← list of input vertices
N ← input dimension
B[2]← double buffer each of size N ×N
Bindex← 0 Copy all coordinates in V to B[Bindex]
step_size← N
while step_size ≥ 1 do

for each pixel p in buffer B[Bindex] do
Obtain closest vertex coordinates of the 8 neighbor pixels of p that are step_size away from
B[Bindex].
Update the closest vertex to p in B[1−Bindex]

end for
Bindex← 1−Bindex
step_size← step_size/2

end while

We implemented the Jump Flood Algorithm in CUDA based on the implementation available by
Rong et al. [7]. Specifically, we parallelized the inner for-loop of the algorithm using the GPU by
mapping each kernel thread to a pixel in the pixel map and synchronizing all kernel threads at the end
of each while loop iteration. We also used a double buffer twice the size of the pixel map to store the
coordinates of the closest vertex for each pixel.
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Figure 10: Speedup diagram and runtime distributions for the Jump Flood approach. The speedup
is computed with respect to the runtime of the Grid-based approach. The runtime distribution is
obtained using uniformly distributed inputs with dimension of 1024.

From Figure 10, we observe that the Jump Flood Algorithm yields significantly better speedup
performances when compared to the Grid-based approach as the number of points increases. In
instances with large number of input vertices or large input dimensions, the Jump Flood algorithm
produces a 6× speedup compared to the Grid-based approach. This is the best performing approach
among all of our parallel implementations.

The efficiency of the Jump Flood Algorithm can be fundamentally attributed to the reduced workload
on each thread. In particular, given an input dimension of N , each thread performs O(logN) work
since the step size reduces by a factor of 2 in each round. Aside from pixels near the edge of the
pixel map, the algorithm achieves good load balance between threads as each thread only checks
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its neighboring pixels. By using a double buffer, we can perform asynchronous updates where we
read pixel values from one buffer and write new pixel values to another buffer before swapping the
buffers at the end of each round to achieve complete data-parallelism. There are no locks or atomic
operations necessary in this implementation.

However, the Jump Flood Algorithm does suffer from relatively large memory requirements. Given
an input dimension of N , the algorithm requires O(2N2) additional memory for the double buffer.
This may be a limiting factor for vertices over large input dimensions.

3.3.4 Parallel Banding Algorithm

We looked at the Parallel Banding Algorithm (PBA) [11], a near state-of-the-art GPU approach for
Discrete Voronoi diagram generation. Due to the implementation complexity of PBA, we did not
implement this algorithm but studied an existing CUDA implementation by Rong et al. [7]. PBA
further decomposes the pixel map geometrically and generally consists of the following 3 phases:

Phase 1 - Band Sweeping: Compute 1D Voronoi diagrams for each row of the pixel map
by parallelizing across bands of each column.

Phase 2 - Hierarchical Merging: Compute proximate nearest vertices for each column of
the pixel map using the 1D Voronoi diagram

Phase 3 - Block Coloring: Use the proximate nearest vertices for each column to compute
the nearest vertex for each pixel in the column.

We compared the performance of our Voronoi generation approaches with the existing PBA imple-
mentation and presented the respective speedups in our Results section below.

4 Results

4.1 Correctness Validation

We wrote a script to validate the resulting Delaunay Triangulation. The script performs the following
three tests:

1. Each input point is a vertex of one or more triangles.

2. For a given triangle, the vertices of the triangle are all different.

3. No point is inside the circumcircle defined by a triangle.

To perform the third test, we had a pre-processing step where we ensured that the vertices were
in counterclockwise order. For vertices v1 = (x1, y1), v2 = (x2, y2), v3 = (x2, y3) and all points

pi = (xi, yi) ∈ V s.t. pi /∈ {v1, v2, v3}, we took the determinant det =

x1 y1 x21 + y21 1
x2 y2 x22 + y22 1
x3 y3 x23 + y23 1
xi yi x2i + y2i 1

 .
If det < 0, then the point pi is outside the circle. If det = 0, then the point is on the circle. If det > 0,
then the point is inside the circle, violating the Delaunay condition. All outputs have been tested
using this script.

4.2 Testing Environment

We ran the various GPU implementations on an Nvidia Tesla K80 GPU with CUDA 9.0. We ran the
CPU sequential baseline on a 3.20GHz Intel Xeon CPU E5-1660. We used the C library function
clock for measuring the runtime of each implementation.

4.3 Implementation Performance

We measured the performance of each parallelization approach based on speedup over the single-
threaded CPU baseline implementation obtained from the PBBS package [5]. Specifically, we vary
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our test cases by the number of input points, the input dimensions, and the input distributions and
observe the speedup behaviors at each case. The speedup graphs of each approach under different
inputs are plotted in Figures 11-17.

From the results, we first observe that while the Brute-force and Grid-based approaches did not
achieve any speedup over the baseline implementation, the Jump Flood and PBA approach did
achieve a significant speedup over the baseline for cases with a large number of input points and
large input dimensions (with the speedup reaching a maximum of 118×). Note that in the case of
input dimension of 2048× 2048 for 10K and 100K points, the CPU implementation is so fast that it
registered an execution time of near 0. Table 1 tabulates the runtime of each GPU implementations
under the different inputs.

CPU Implementation vs. GPU Implementation: It is interesting to note that while speedup is
achieved on workloads with large number of inputs, for smaller input sizes such as 100 or 1000
points, no GPU implementations measured were able to achieve a speedup of > 1 over the CPU
implementation. We hypothesize that this interesting observation can be attributed to fundamental
differences between CPU and GPU implementations. In particular, a larger percentage of the
runtime is attributed to the overhead for the kernel launches and GPU memory operations for GPU
programs when dealing with less computationally heavy workloads. In these lighter workloads, CPU
implementations perform better since they require less setup and launch overhead. On the other
hand, when dealing with computationally heavy workloads, GPU implementations achieve significant
speedups over the CPU implementations since the percentage of time spent on kernel setup and
host-to-device or device-to-host memory transfer diminishes compared to the percentage of time
spent performing the computation.

4.3.1 Effect of Varying Input Dimension on Performance

Figures 11-14 show the speedup for different input dimensions while holding the number of input
points constant.
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Figure 11: Input dimension vs. speedup for 10K
points
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Figure 12: Input dimension vs. speedup for
100K points
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Figure 13: Input dimension vs. speedup for 1M
points
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From the above result, we observe that both the Brute-Force Voronoi and Grid-based Voronoi
approaches failed to achieve any speedup over the baseline as input dimensions increase. Specifically,
the runtime of the brute-force approach increased quadratically with the increase in input dimensions
as shown by the runtimes in Table 1.

We also observe that the performance for Jump Flood Algorithm decreases as the input dimension
increases. This suggests that the Jump Flood Algorithm does not scale well with increased input
grid dimensions. In fact, the runtime of the Jump Flood Algorithm is highly dependent on the input
dimension. This is because a larger input dimension leads to a larger initial step size and therefore
more iterations of the algorithm, as the step size decreases by a factor of 2.

Compared to the Jump Flood Algorithm, the PBA implementation scales well with increased input
dimensions as the speedup does not vary significantly across different grid sizes. This indicates that
the fine-grained geometric decomposition employed by PBA is more effective in dealing with larger
grid sizes.

4.3.2 Effect of Varying Number of Points on Performance

Figures 15-17 show the speedup for different numbers of points while holding input dimension
constant.
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Figure 15: Number of points vs. speedup for
input dimension 4096
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Figure 16: Number of points vs. speedup for
input dimension 8192
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Figure 17: Number of points vs. speedup for
input dimension 16384

From the above results, we again observe that Brute-Force Voronoi and Grid-based Voronoi ap-
proaches failed to achieve any speedup over the baseline. The runtime of the Brute-force approach
again increased quadratically with respect to increasing data points.

We also observe that the speedup for Jump Flood algorithm increases with increased number of input
points. From the runtimes shown in Table 1, we observe that this is not because the Jump Flood
implementation runs faster with increased number of points, but because the baseline runs slower with
large input sizes. We also observe that the changes in run time for the Jump Flood algorithm across
increasing number of input points is fairly small, indicating that the Jump Flood algorithm scales
well with increased number of input points. This can be explained by the fact that the complexity
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of the Jump Flood algorithm is independent of the number of input points and only dependent on
the input dimension. We notice that the Jump Flood approach yields comparable performance to the
PBA approach with varying input points.

4.3.3 Effect of Different Input Distributions on Performance

We observe that for Brute-force, Jump Flood, and PBA, varying the input distribution while keeping
input dimensions and number of input points constant does not change performance. However, as
mentioned in the above section, the Grid-based implementation is highly dependent on the distribution
of input points. As shown in Figure 18, we observe that the Grid-based algorithm runs slower on the
same input dimensions and same number of points generated on Gaussian distributions than Uniform
distributions. This is due to the fact that there are more pixels with no neighboring vertices in the
Gaussian distribution, leading to an increased number of brute-force pixel colorings.
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Figure 18: Uniform vs. Gaussian distributions for the Grid algorithm

4.3.4 Performance Breakdown

The execution time for the Jump Flood Algorithm is decomposed in Figure 19 with inputs containing
10M points and varying input dimensions. From the plot below, we notice that the performance
bottleneck still lies with the Voronoi Generation Phase (indicated by Jump Flood in the diagram).
However, compared to the execution time breakdown for other approaches, the Jump Flood algorithm
demonstrates better scaling behavior as the percentage of time spent on Voronoi diagram generation
is lower than Brute-Force and Grid-based approaches.
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Figure 19: Breakdown of Execution Time for the Jump Flood Algorithm

4.4 Implementation Bottleneck

We used the Nvidia profiler (nvprof) to examine our best-performing implementation, the Jump
Flood algorithm, to see what is limiting speedup. The kernel that performed jump flood was
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responsible for >90% of the total runtime. The profiler indicated that the warps and threads were
fully utilized, so occupancy is not the issue.

Looking at the compute and memory utilization of the kernel in Figure 20, we see that both compute
throughput and memory bandwidth are below 40%, suggesting that the issue is memory latency.
Figure 21 shows the reasons for stalls. We see that execution dependencies are the primary reason for
stalls, as input required by some instruction is not yet available.

To improve the algorithm, we can make use of shared memory. Currently, the kernel is only using
global memory, which has higher latency and lower bandwidth than shared memory. Jump flood does
not access nearby locations, but jumps to other locations (random accesses of the cache), so we will
have to think more about how shared memory could be used.

Figure 20: Compute and memory utilization of the Jump Flood kernel

Figure 21: Reasons for stalls in the Jump Flood kernel

5 Conclusion

In this project, we attempted to parallelize algorithms for 2D Delaunay Triangulation using the
GPU. We utilized the property that the Voronoi diagram is the dual for Delaunay Triangulation and
implemented the Brute-Force, Grid-based, and Jump Flood GPU parallelization approaches. Using
the single-threaded CPU sequential implementation in PBBS [5] as baseline, we observe that the
Brute-Force and Grid-based approaches fail to yield speedups while the Jump Flood implementation
yielded comparable speedups to the PBA implementation with increasing number of input points.
These results produced insights in how improvements in the runtime and work distribution of parallel
algorithms can significantly improve the performance of the parallel implementation.

6 Work Distribution

The work is distributed equally 50%-50% among the two group members. We distributed the work as
follows: Harvey implemented the grid Voronoi and Jump Flood Voronoi, and a Voronoi visualizer.
Connie set up the environment, code scaffold, and Makefile while also completing the brute force
Voronoi implementation and profiling the PBBS parallelized implementation. Both wrote scripts to
automate the experiments, analyzed data, and wrote this report.
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7 Appendix

Input
Dimension

Number of
Points

Serial CPU
Random
Incremental
(Baseline)

Voronoi
Naive
(Ours)

Voronoi
Grid (Ours)

Voronoi
Jump Flood
(Ours)

Voronoi
Parallel
Banding
Algorithm[7]

1024 100 0 0.0888 0.0879 0.0933 0.08
1024 1000 0 0.1014 0.0913 0.0928 0.09
1024 10000 0.01 0.2133 0.0976 0.0946 0.08
2048 1000 0 0.1369 0.1055 0.1088 0.08
2048 10000 0 0.5545 0.1075 0.1104 0.09
2048 100000 0.01 3.672 0.2541 0.114 0.09
4096 1000 0 0.2055 0.1344 0.1802 0.09
4096 10000 0.01 1.6038 0.1389 0.1602 0.09
4096 100000 0.14 13.3908 1.1754 0.1875 0.1
4096 1000000 2.78 135.7671 fail 0.206 0.16
4096 10000000 40.63 200+ fail 0.3432 0.3469
8192 1000 0 0.7769 0.2453 0.3385 0.08
8192 10000 0.01 5.4726 1.2678 0.4515 0.09
8192 100000 0.2 53.5301 1.5291 0.3644 0.09
8192 1000000 2.77 200+ fail 0.4998 0.17
8192 10000000 45.04 200+ fail 0.6375 0.57
16384 1000 0 2.5158 0.8165 1.3304 0.09
16384 10000 0.01 21.5332 1.8596 1.2619 0.09
16384 100000 0.19 217.7283 fail 1.4874 0.09
16384 1000000 2.89 200+ fail 1.3849 0.16
16384 10000000 44.32 200+ fail 1.7175 0.58

Table 1: Total clock time (seconds) for various approaches.
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